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Two continuous models for the dynamics of sandpile surfaces
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We consider a modified Bouchaud—Cates—Ravi Prakash—Edwards model for pile surface dynamics, and
show that in the long-scale limit this model converges to a quasistationary model of pile growth in the form of
an evolutionary variational inequality.
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I. INTRODUCTION Cates, Ravi Prakash, and Edwar@he BCRE modsel
[12,13. Although the choice of the basic variables in this

Recently much interest in the physics of granular medianodel is equivalent to that in Refgl,2], the model is writ-
was stimulated, in particular, by two salient features of theten for free surfaces only slightly deviating from the critical
granular state: multiplicity of metastable pile shapes and thelope and employs different phenomenological constitutive
occurrence of avalanches upon pile surfaces. It was realize@lations. Emphasis is placed on the simulation of fast pro-
that, to account for metastability, the model of pile surfacecesses, like amplification and distinction of rolling grains
dynamics should not be written as an evolutionary equatiopopulation during an avalanche. The BCRE model was sim-
for the pile surface alone. An additional unknown characterplified by de Gennes[14], applied to various one-
iZing the flow of grains down the plle surface is useful be-dimensiona| surface flow prob|en(|see, e.g., RefilSyl@),
cause such flows are not uniquely determined by the externghd modified for thick surface granular flows7]. Further
source and local free surface topography. exact solutions to simplified BCRE equations can be con-
A large spatiotemporal scale pile growth model involving strycted by methods proposed in Reff$8,19. Using the
two coupled dependent variables, and able to account fasCRE model, Bouchaud and Catf20] explained another
metastability, was proposed in Refd,2]. This model ne-  type of avalanchdin a thin granular layer on an inclined
glects avalanches as small fluctuations of the pile surfacqﬂane; see Ref21)).
and describes the evolving mean surface of a pile that grows oyr aim here is to investigate a relation between the two
on an arbitrary support under a given distributed source ofnodels mentioned above. After briefly outlining the varia-
bulk material. The model permits an equivalent formulationtjonal and BCRE models, we propose a full-dimensional
as an evolutionary variational or quasivariational inequality;genera|ization of the latter, originally formulated by BCRE
such a formulation Significantly S|mpl|f|e3 both the math'in the one-dimensional case. To do thiS, we mod|fy and ex-
ematical study of the probleii8] and its numerical solution tend the constitutive relations determining the surface flow
[1,4,9. As shown in Ref[2], the shapes of real piles on flat yelocity and the rolling-to-immobilized-state transition rate:
open platformg 6] are described by analytical solutions of BCRE's assumption that the slope is almost critical every-
this inequality. A modification of the mOdel, able to aCCOUntwhere is too restrictive for our purpose. Resca”ng the vari-
for avalanches as almost instantaneous slides, was also digyles, we show that the modified BCRE model contains a
cussed in Ref[2]; according to observations made in the small parameter, the ratio of a characteristic rolling grains
same Work, such a slide may, indeed, be a pOSSible aVaIancwer thickness to the p||e Size’ and hence may often be sim-
scenario(also see Ref.7]). plified by employing a quasistationary equation for the roll-
Independently, using different arguments, the same piléhg grains layer. The issue of scaling turns out to be very
growth model in the form of a variational inequality was jmportant in a description of pile growth: another dimension-
derived by Aronsson, Evans, and W8i. In Ref.[9], Evans  |ess parameter in the model thus obtained is the ratio of a
et al. studied its discontinuous solutions corresponding tQypical rolling grain path length to the pile size. For large
avalanches; in Ref10] Evans and Rezakhanlou showed thatpjjes, this coefficient is also small, and we show that in the
the cellular automata models of sandpiles, presented as intigng-scale limit the modified BCRE model tends toward the
itively attractive examples in almost all works on self- yariational model[1,2]. For small piles, the corresponding
organized criticality 11], converge in a continuous limit to @ term can be significant. These results make it clear why the
similar variational inequality with an anisotropy inherited shapes of small and large piles differ, and, correspondingly,
from the cellular structure of these crude models. why different models should be used to simulate, say, the

A different continuous model, also involving two coupled formation of large sand dunes and small Aeolian ripples.
dependent variables and describing the granular surface flow

and pile surface dynamics, was proposed by Bouchaud,
Il. VARIATIONAL MODEL OF PILE GROWTH

*Email address: leonid@bgumail.bgu.ac.il Let a cohesionless granular material having an angle of
"Email address: boris@bgumail.bgu.ac.il reposea, be tipped out onto a given rough rigid surface
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y=ho(x), where x=(x;,x,) e R2. We want to find the m
shape of a pile thus generated.

The real process of pile growth is often intermittent: dis-
charged granular material not only flows continuously over
the pile slopes but is also able to build up and then to pour
suddenly down the slope in an avalanche. However, the ava-
lanches usually involve only a small amount of particles in a
pile and cause small fluctuations of the pile free surface. The
model[1,2] neglects these fluctuations, and is a model for
the mean surface evolution. Whether the pile evolution is 0 k
governed by a continuous surface flow or results from many ) o .
small avalanches, the surface flow is typically confined to a  FIG. 1. Multivalued constitutive relatiom=m(|Vh]).
thin boundary layer which is distinctly separated from the

[V hi

motionless bul22]. hlr,=holr,, mMash|p,=0. (6)
Let us assume for simplicity that the support surface has
no steep slopes, i.e., The model(1)—(6) contains two coupled unknowns: the

free surfaceh, and an auxiliary functioom determining the
rolling grains flux magnitude. Conditiond), (3), and (4)

wherek=tana, (see Refs[1—3] for the general caseAs- definem as amultivaluedfunction of |Vh|; see Fig. 1.

suming the bulk density of material in a pile is constant, wed.ﬁ:rh.e problslm(l)—(G; sz;\y geb con5|der_ed ?n ﬁzpmﬁloﬁls
can write the conservation law as rfusion problem, and soived by approximating this highly

nonlinear multivalued relation. However, a better way to
ah+V.g=w, solve this problem is based on its following reformulation in

the form of an evolutionary variational inequalityee Refs.
where h(x,t) is the free surfaceg(x,t) is the horizontal [23] and [24] for_ variatio_nal ineqL_JaIities in m_echanics and
projection of the flux of rolling particles, and/(x,t) the Physics and their numerical solution, respectiyely
source intensity. We neglect the inertia and suppose that sur- L€t us define the st of possible surfaces as
face flow is directed toward the steepest descent,

K={e(x) | [Vel<k, ¢|r,=ho|r}

|Vho| <k,

gq=-—mVh,
and the scalar product of two functions asp, ()
where =[q¢ydx. We can now consider the following problem
m(x,t)=0 ) (variational inequality.

is an unknownscalar function. The conservation law now Find h(x,t) such thaheK for all t>0,

takes the form
(dth—w,o—h)=0 forall peK, (7)
dh—V-(mVh)=w. (2
. . . andh|t:O:ho.
It is assumed in this model that the surface slope angle can-

not exceed the angle of repose, TheoremFunctionh(x,t) is a solution of the variational

inequality (7) if and only if there existsn(x,t) such that the
pair {h,m} is a solution to(1)—(6).
The outline of the proof is given in Ref2] [see Ref[3]
mathematical details and a proof of existence of a unique
solution to the variational inequality7)]. It was also shown
|Vh(x,t)|<k=m(x,t)=0. (4)  that the surface flux magnitude(x,t) is, in this model, a
Lagrange multiplier related to the pointwise constraiBit
To complete the model we have to specify the initial condi-The values of such multipliers are not uniquely determined
tion, by the local conditions, which is the “mathematical expla-
nation” of long-range interactions typical of extended dissi-
hlt=o=ho, (5) pative systems in a criticdinarginally stablgstate; see Ref.
[25].
and a boundary condition. Let the granular material be al- The model(1)—(6) or, equivalently,(7), has analytical
lowed to leave the system freely through p&rt of the  solutions(see Ref[2]) describing the shapes of piles built up
boundary of domaif C R?, and the other part of the bound- on flat platforms in the experimen{$]. The simplest of
ary,I',, presents an impermeable wall. The boundary condithese solutions is the ideal cone growing below a point
tions are then sourcew=w,4(x) on the supporhy(x)=0,

|Vh|<Kk, ©)

and that no pouring occurs over the parts of the pile surfac?
which are inclined less: or
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h(x,t)=k maxr(t)—|x|,0}, but the constitutive relations determining and, probably,
I'[h,R] should be madified; here we will follow Ref27]
where r(t) = (3wot/7k) 2 is the radius of the cone base. (also see Ref28]). We assume that the rolling particles drift
Numerical solution$1,4] also demonstrate simple geometri- toward the steepest descent of the free surface with a mean
cal structures that agree with one’s sandbox memories. Avelocity v depending on the slope angléhe steeper the
though the model is simplified in many respects, it allows forslope, the higher is the velocjtyOn their way downslope,
the multiplicity of possible pile shapes. The avalanches maghese particles may be trapped and absorbed into the motion-
be introduced into the model as solution discontinuities  less bulk(the steeper the slope, the lower is the trapping rate
time) triggered by sudden changes of the admissiblekset I'). If the surface is horizontal, the mean flow velocity is
(see Refs[9,2]), and are instantaneous events. On the timezero and the trapping rate is maximal; @+ «, the rolling
scale of a slow pile growth the life of an avalanche is, in-particles follow without trapping. Below, we will not con-
deed, very short. sider the overcritical slopes, and also assume that the trap-
ping rate is proportional to the amount of rolling graiRs
At least partially, this simplified picture can be justified
by recent experimental, theoretical, and numerical studies on
The BCRE equation§12,13 involve two coupled vari- the motion of a spherical particle on a rough inclined plane
ables: the pile heighty=h(x,t), and the effective thickness [29,30. For the relevant region of slope angligsthe energy
(density of the rolling grains layerR(x,t) [R(x,t)dQ) is the dissipation due to the multiple shocks experienced by a mov-
volume that the material, currently rolling above the areang patrticle is equivalent to the action of a viscous friction
dQ, would occupy in the pile The model has been formu- force [29]. Because of this such particles reach a constant
lated for a two-dimensional pilexe RY); free surface slope mean velocity proportional to sifi Sometimes, however, the
deviations from the critical angle were assumed to be smallparticles are suddenly trapped in a well, and completely lose
Original BCRE equations included diffusion terms to ac-their momentum in the direction of motidi30]. Of course,
count for a nonlocality of grains dislodgement and for fluc-conditions in the collective flow of grains over the pile sur-
tuations of rolling grain velocity. Although diffusion plays a face are somewhat different. In particular, the flow velocity
crucial role in BCRE’s scenario of avalanchgk?,13,20Q, may depend on the thickness of rolling grains laya], and
these terms were regularly omitted by other researchers whihie exchange rate is not exactly proportionaRtfl7]. Vari-
either assumed that diffusion was insignificant in their prob-ous improved dependencies can be incorporated into the
lems and simplified the model, or proposed a different avamodel. The limiting behavior of the modified BCRE model
lanche scenarigsee, e.g., Refd.14,16,18,28). Below, we is, however, robust, and does not depend on details. For clar-
also omit the diffusion terms at first, but introduce smallity of presentation we will consider the long-scale limit of a
diffusion at a later stage as a means for model regularizatiothin-flow model, with the simplest phenomenological rela-
in transition to a large-scale limit. Adding small diffusion tions determining the flow velocity and the rolling-to-
(artificial viscosity is often employed also to smooth the immobilized-state transition.
discontinuous solutions; see, e.g., Ré8]. Since the mean velocity of the surface flow is propor-
Simplified BCRE equations may be written as follows: tional to sind [29], its horizontal projectiow is proportional
to sindcosé=tand/(1+tarfd). Postulating that the flow is
oh=TTh,R], R+ (vR)=w—TITh,R]. in the steepest descent direction, we obtain — uVh/(1
+|Vh|?), whereu is a coefficient. Simplifying this relation,
Here the termi'[ h,R] accounts for the conversion of rolling we assume
grains into immobilized grains and vice versais the hori-
zontal projection of rolling grains velocity, amd(x,t) is the v=—uVh. ©)
source intensityit is assumed that the tipped grains do not.l_he exchange ratE should not depend on the slope orien-

stick 1o the pile surface but join the rolling grains frst tation, and we assume it to be a smooth decreasing function
Limiting their consideration to the slopes that are close toOf |Vr;|2 that becomes zero for critical slones Assur‘r?l“n'
critical, BCRE assumed a constant downslope drift velocity Pes. &

v. The surface flux magnitudg=vR is thus determined proportional toR (thin flows), we arrive at

Ill. MODIFIED BCRE EQUATIONS

solely by the rolling layer thicknedR. Since in the previous |Vh|2
model g=mk for the critical slopesm and R play similar I'[h,R]=yR| 1— ) (10)
roles, and the two choices of basic variablgs,m} and k?

{h,R}, are essentially equivalent. The exchange térrm i " , ) .
the BCRE model is linearized in a vicinity of the critical @S the simplest constitutive relatip7]. We will now derive
angle a, and is proportionalfor thin surface flowsto R a dimensionless formulation for the modified BCRE model

I'[h,R]=yR(a,— ), where 6(x,t) is the surface slope LEYS-(®)—(10)].
arEgIe lmd);/ i(sar;l cozafficient. (x.0) P The parameters in this model have the following dimen-

For a three-dimensional pilexe R?), the model equa- Sions:[y]=7"* and[u]=7"". Let us denote byw the

tions are similar, characteristic intensity of the external sour[:n?r,]=£T‘?
The three length scales characterizing the pile surface dy-
oh=TTh,R], ¢R+V-(vR)=w—-I[h,R], (8) namics and surface granular flow may be defined as follows:
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(i) the typical thickness of the rolling grains layety  equation form, contains in its main part the coefficielh
=w/y; (ii) the mean path of a rolling particle before it is Which may be discontinuous. The theory for such equations
trapped Strong|y depends on the S|Ope Steepness but, fori%complicated and not well deve|0p6d. To circumvent the
fixed subcritical S|0pe, is proportiona| to the raﬂ@: M/ﬂ}/ d|ff|CU|ty, we add small diffusion to both equations and con-
characterizing the competition between rolling and trappingsider the regularized models
and (iii ) the pile sizel. vh

The timeT=L/w needed for a source with given intensity d.h= w +epAh, (14)

_ t
w to produce a pile of sizé& may be used as a long time
scale. Rescaling the variables,

my(|Vh|)
Nom—=V-(mVh)=w— ——+¢,Am, (15
1 1 1 1 4
X'=EX, hl:Eh’ RI:L_R’ w' ==w, tl:ft’ - o .
R w where the positive coefficients,(v) ande,(v) vanish asv
tends to zero. It should be noted that, although small diffu-
sion may be physically meaningful and has been included
9h=T[h,R] (11) into the original BCRE formulation12,13, here we intro-
th— y ) . . . . .
duce it merely as a parabolic regularization of hyperbolic
Lp equations convenient for analyzing the model’'s behavior at
&tR—TV-(RVh)=w—F[h,R], (12 »—0.
We assume the same initial and boundary conditions,
) [Egs. (5) and (6) correspondingly for the functionh. The
I'Th R]=R(1— [Vh| ) (13 non-negative values ofm both in ) at t=0 and on the
' k2 |’ boundary of this domain fot>0 may be arbitrary: these
initial and boundary conditions result only in the appearance
Typically, Lg<Lp<L. The first coefficient in Eq(12) is  of boundary layers in the solution for any finite>0 and are
very small, so it may often be possible to omit the corre-lost in they—0 limit. Rigorously, convergence of the prob-
sponding term and use a quasistationary equation for them (14), (15) to variational inequality7) is considered else-
rolling layer. Such an approach was already employed in avhere[32]. Here we present a simplified scheme of the proof
simulation of the dynamics of sand ripples; see R&f]. = and avoid technicalities.
The second coefficient /L may be significant for small The main step is, as usual, to obtain uniform#r0 a
piles, like sand ripples, but becomes small too for large pilespriori estimates on the solutions of Eq$4) and(15). First,
Further simplification of the model is then appropriate. taking the gradient and multiplying Byh, from Eq.(14) we
derive a parabolic partial differential equation fovh|2.
IV. LONG-SCALE LIMIT OF BCRE MODEL Since (k) =0 and|Vho|<k, we are able, using the maxi-
mum principle for this equation, to show that fer-0

we arrive at the following dimensionless formulation:

Lr
L

Let us denotev=Lp/L, and study thee— 0 behavior of
the model[Egs. (11)—(13)]. This limit corresponds to the |Vh|<k forall (x,t); hisuniformly bounded.
case of large pilesl(>>Lp). We want to show that in this (16)

limit the pile shape evolution is described by the variational ) ) ]
inequality (7) which remains invariant under the re- Second, using the non-negativeness of the source function

scaling employed. w(x,t), and applying the maximum principle to E45), we
Physically, the situation is clear: although the mddegs. ~ deduce that for each>0,

(11)—(13)] permits grains to roll down upon any inclined

slope, the rolling particles are quickly stopped and their

paths are short compared to the pile size for all except thg\

almost critical slopes. This is essentially what is assumed in

m=0 forall (x,t). 17)

pplying estimateg16) and(17) to Eq. (14) we obtain

the model[1,2], which permits rolling upon the critical my(|Vh|)=0(). (18)
slopes only. Mathematically, the situation is somewhat more
complicated. Sendingv to zero in(16), (17), and (18), we establish the

SinceLg<Lp, we assumd.g/L is o(v) and setLr/L  fyffiliment in this limit of conditions (1), (3), and (4). Fi-
=vA(v), where\ tends to zero ag—0. Let us introduce a ng|ly, adding Eqs(14) and (15), we obtain

new variablem=vR, definey(u)=1-u?k? and rewrite

the model[Egs.(11)—(13)] as Nom+dh—V-(mVh)=w+e,Ah+e,Am.
my(|Vh) my(|Vh) Since\, €y, ande,, vanish asv—0, we can show that the
dh= v » Aom=V-(mVh)=w- corresponding limits oth and m satisfy also the balance

equation(2) in some weak(integra) sense. This completes
For anyr>0 this system consists of two coupled hyperbolicthe proof, because the mod€&l)—(6) is equivalent to the
equations. The second equation, which can be regarded as aariational inequality(7).

041505-4



TWO CONTINUOUS MODELS FOR THE DYNAMICS @.. .. PHYSICAL REVIEW E 63 041505

(a) (@)

FIG. 3. Piles growing below a pointlike source. Numerical so-
lution of Egs.(14) and (15 with ep=g,=0, M|;—o=0, A=0.1,
andk=1. (@) Small piles,»=0.2. (b) Solid line: large piles,v
=0.01; dashed line: analytical solution of variational inequality

ously in Ref.[16] for the BCRE model with constant drift
velocity of particles. Let the domaif=(0,L) be bounded
by two vertical walls, andv=wyd(x—L/2). Assumingd;h
=c andd;m=0, we obtain

|h;|2)
1- , (19

FIG. 2. Piles growing below a pointlike sourc@) Digitized m
image of a small polenta pile; see Alonso and Herrm&@8). Dif- C=—
ferent gray levels show the pile at different stages of growth; the
curved tails near the pile bottom remain shah) Large conical
pile; photo by Slatef34].

To illustrate this result we will now compare solutions of
the BCRE-type mode[Egs. (14) and (15)], solutions of
variational inequality(7), and real shapes of small and large
piles. Let us consider first a pile growing under a point
source on an infinite horizontal suppdrg=0. Although in
this case the piles are known to be almost perfect cones,
sometimes one can noft83] curved tails near the bottom of
a small pile[Fig. 2(@)]. As the pile becomes larger, the tail
remains of only, say, tens of grain diameters long, so the tail
of a large pile is difficult to se¢Fig. 2(b)].

The modified BCRE modéEqs.(14) and(15)] describes
this situation quite satisfactorilgFig. 3). (Here we omitted
small diffusion terms added for regularization, and solved
the equations numerically far,=&,=0,A=0.1v, and two
different values of the parameter) Although the tails of
small piles (#=0.2) are clearly seen, tails of the larger piles
(»=0.01) is difficult to detect. We see also that piles, pre-
dicted by the BCRE model with small and \, are very
close to the growing ideal cone, the analytical solution of the
variational inequality(7). It may be noted that for small val-
ues ofv and\ the model equations are stiff, and their nu-
merical solution becomes difficult. Thus, even using the im-
plicit finite-difference approximation of Eq$14) and (15),
we needed 10time steps in the latter example.

Analytical quasistationary solution to the modified BCRE
equationg14) and(15) without diffusion can be found in the FIG. 4. Geomorphological patterns on two different scales.
one-dimensional vessel-filling problem considered previPhoto by © Carr Clifton, reproduced with his kind permission.
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and —(mh)),=w—(m/v)(1—|h,|?/k?). Adding these
equations and integrating i we see that=wg/L and then
m=x/Lh, for 0<x<L/2 (we can use symmetrySubstitut-
ing these expressions into Ed.9) we find

k
h! 0<x<L/2.

T (okI2X) + (KA + 1

Although h;—0 asx—0 for any v>0 (a tail), we also see
that asv—0 the slope becomes criticdl, —k for all 0<x
<L/2, and we arrive at the corresponding solutighof the
variational inequality(7).

PHYSICAL REVIEW E63 041505

BCRE-type models may be used to simulate the fast pro-
cesses, such as the initiation, spreading, and settling down of
an avalanche. To describe the much slower dynamics of the
mean shape of a pile, the model may often be simplified by
employing a quasistationary equation for the rolling grains
layer. Such a model is able to predict some peculiarities of
small pile shapef33], and was recently employed for simu-
lating the nonlinear dynamics of sand ripp[&5].

Unlike the BCRE models, the variational model of pile
growth does not permit the discharged grains to roll upon
subcritical slopes, and is therefore unable to account for such
features of the sand surface as the sand-ripple instability or
the surface slope deviation from the critical angle near the

Note that in both examples considered above the moddiottom of a conical pile. Indeed, these effects are determined
with constant velocity of rolling particles yields solutions by rolling of particles upon the subcritical slopes, and are
with logarithmic singularities that are unphysical and mustexhibited on the length scale comparable to the mean path of
be “cut off” (see, e.g., Ref16]). No singularities appear in @ particle prior to its being trapped.
the modified BCRE moddlEgs. (14) and (15)] where the ~ On the other hand, sand ripples on the dune surface or
velocity depends on the slope steepness. tiny tails at the bottom of a pile are seen only from a short
distance(Fig. 4). These small details are difficult to distin-
guish when watching from a longer distance, allowing one to
follow the evolution of a large dune or the formation of a

We considered two different continuous models for pilelarge pile. In such situations the BCRE model contains an-
surface dynamics: the BCRE moddl2,13 and the varia- other small parameter. This complicates simulations and
tional model[1,2]. Both models are written for two coupled makes them inefficient. As shown in our work, in the long-
dependent variables and are able, in principle, to account facale limit BCRE-type models converge to the variational
multiplicity of metastable pile shapes and surface avamodel of pile growth. The latter model is more appropriate
lanches. It was found that the models are related and descrilfer simulating the pile surface dynamics on a large spa-

V. CONCLUSION

the pile surface dynamics on different spatiotemporal scalegiotemporal scale.
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