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Two continuous models for the dynamics of sandpile surfaces
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We consider a modified Bouchaud–Cates–Ravi Prakash–Edwards model for pile surface dynamics, and
show that in the long-scale limit this model converges to a quasistationary model of pile growth in the form of
an evolutionary variational inequality.

DOI: 10.1103/PhysRevE.63.041505 PACS number~s!: 83.80.Fg, 45.05.1x, 45.70.2n
di
th
th
iz
c
tio
e
e
rn

ng
f

c
ow

o
on
ity
h-

t
of
n
d
e

nc

pi
s

t
a
in
lf-
a
d

d
flo
u

is

al
ive
ro-

ns
im-

on-

d

wo
a-
al
E
ex-
ow
e:
ry-
ri-

s a
ins
im-
ll-

ery
n-
f a
e

the
he
g
the
gly,
the

of
e

I. INTRODUCTION

Recently much interest in the physics of granular me
was stimulated, in particular, by two salient features of
granular state: multiplicity of metastable pile shapes and
occurrence of avalanches upon pile surfaces. It was real
that, to account for metastability, the model of pile surfa
dynamics should not be written as an evolutionary equa
for the pile surface alone. An additional unknown charact
izing the flow of grains down the pile surface is useful b
cause such flows are not uniquely determined by the exte
source and local free surface topography.

A large spatiotemporal scale pile growth model involvi
two coupled dependent variables, and able to account
metastability, was proposed in Refs.@1,2#. This model ne-
glects avalanches as small fluctuations of the pile surfa
and describes the evolving mean surface of a pile that gr
on an arbitrary support under a given distributed source
bulk material. The model permits an equivalent formulati
as an evolutionary variational or quasivariational inequal
such a formulation significantly simplifies both the mat
ematical study of the problem@3# and its numerical solution
@1,4,5#. As shown in Ref.@2#, the shapes of real piles on fla
open platforms@6# are described by analytical solutions
this inequality. A modification of the model, able to accou
for avalanches as almost instantaneous slides, was also
cussed in Ref.@2#; according to observations made in th
same work, such a slide may, indeed, be a possible avala
scenario~also see Ref.@7#!.

Independently, using different arguments, the same
growth model in the form of a variational inequality wa
derived by Aronsson, Evans, and Wu@8#. In Ref. @9#, Evans
et al. studied its discontinuous solutions corresponding
avalanches; in Ref.@10# Evans and Rezakhanlou showed th
the cellular automata models of sandpiles, presented as
itively attractive examples in almost all works on se
organized criticality@11#, converge in a continuous limit to
similar variational inequality with an anisotropy inherite
from the cellular structure of these crude models.

A different continuous model, also involving two couple
dependent variables and describing the granular surface
and pile surface dynamics, was proposed by Boucha
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Cates, Ravi Prakash, and Edwards~the BCRE model!
@12,13#. Although the choice of the basic variables in th
model is equivalent to that in Refs.@1,2#, the model is writ-
ten for free surfaces only slightly deviating from the critic
slope and employs different phenomenological constitut
relations. Emphasis is placed on the simulation of fast p
cesses, like amplification and distinction of rolling grai
population during an avalanche. The BCRE model was s
plified by de Gennes@14#, applied to various one-
dimensional surface flow problems~see, e.g., Refs.@15,16#!,
and modified for thick surface granular flows@17#. Further
exact solutions to simplified BCRE equations can be c
structed by methods proposed in Refs.@18,19#. Using the
BCRE model, Bouchaud and Cates@20# explained another
type of avalanche~in a thin granular layer on an incline
plane; see Ref.@21#!.

Our aim here is to investigate a relation between the t
models mentioned above. After briefly outlining the vari
tional and BCRE models, we propose a full-dimension
generalization of the latter, originally formulated by BCR
in the one-dimensional case. To do this, we modify and
tend the constitutive relations determining the surface fl
velocity and the rolling-to-immobilized-state transition rat
BCRE’s assumption that the slope is almost critical eve
where is too restrictive for our purpose. Rescaling the va
ables, we show that the modified BCRE model contain
small parameter, the ratio of a characteristic rolling gra
layer thickness to the pile size, and hence may often be s
plified by employing a quasistationary equation for the ro
ing grains layer. The issue of scaling turns out to be v
important in a description of pile growth: another dimensio
less parameter in the model thus obtained is the ratio o
typical rolling grain path length to the pile size. For larg
piles, this coefficient is also small, and we show that in
long-scale limit the modified BCRE model tends toward t
variational model@1,2#. For small piles, the correspondin
term can be significant. These results make it clear why
shapes of small and large piles differ, and, correspondin
why different models should be used to simulate, say,
formation of large sand dunes and small Aeolian ripples.

II. VARIATIONAL MODEL OF PILE GROWTH

Let a cohesionless granular material having an angle
reposea r be tipped out onto a given rough rigid surfac
©2001 The American Physical Society05-1
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LEONID PRIGOZHIN AND BORIS ZALTZMAN PHYSICAL REVIEW E63 041505
y5h0(x), where x5(x1 ,x2)PR2. We want to find the
shape of a pile thus generated.

The real process of pile growth is often intermittent: d
charged granular material not only flows continuously o
the pile slopes but is also able to build up and then to p
suddenly down the slope in an avalanche. However, the
lanches usually involve only a small amount of particles i
pile and cause small fluctuations of the pile free surface.
model @1,2# neglects these fluctuations, and is a model
the mean surface evolution. Whether the pile evolution
governed by a continuous surface flow or results from m
small avalanches, the surface flow is typically confined t
thin boundary layer which is distinctly separated from t
motionless bulk@22#.

Let us assume for simplicity that the support surface
no steep slopes, i.e.,

u¹h0u<k,

wherek5tana r ~see Refs.@1–3# for the general case!. As-
suming the bulk density of material in a pile is constant,
can write the conservation law as

] th1¹•q5w,

where h(x,t) is the free surface,q(x,t) is the horizontal
projection of the flux of rolling particles, andw(x,t) the
source intensity. We neglect the inertia and suppose that
face flow is directed toward the steepest descent,

q52m¹h,

where

m~x,t !>0 ~1!

is an unknownscalar function. The conservation law no
takes the form

] th2¹•~m¹h!5w. ~2!

It is assumed in this model that the surface slope angle
not exceed the angle of repose,

u¹hu<k, ~3!

and that no pouring occurs over the parts of the pile surf
which are inclined less:

u¹h~x,t !u,k⇒m~x,t !50. ~4!

To complete the model we have to specify the initial con
tion,

hu t505h0 , ~5!

and a boundary condition. Let the granular material be
lowed to leave the system freely through partG1 of the
boundary of domainV,R2, and the other part of the bound
ary, G2, presents an impermeable wall. The boundary con
tions are then
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5h0uG1

, m]nhuG2
50. ~6!

The model~1!–~6! contains two coupled unknowns: th
free surfaceh, and an auxiliary functionm determining the
rolling grains flux magnitude. Conditions~1!, ~3!, and ~4!
definem as amultivaluedfunction of u¹hu; see Fig. 1.

The problem~1!–~6! may be considered an anomalo
diffusion problem, and solved by approximating this high
nonlinear multivalued relation. However, a better way
solve this problem is based on its following reformulation
the form of an evolutionary variational inequality~see Refs.
@23# and @24# for variational inequalities in mechanics an
physics and their numerical solution, respectively!.

Let us define the setK of possible surfaces as

K5$w~x! z u“wu<k, wuG1
5h0uG1

%

and the scalar product of two functions as (f,c)
5*Vfc dx. We can now consider the following problem
~variational inequality!:

Find h~x,t ! such thathPK for all t.0,

~] th2w,w2h!>0 for all wPK, ~7!

andhu t505h0 .

Theorem.Functionh(x,t) is a solution of the variationa
inequality~7! if and only if there existsm(x,t) such that the
pair $h,m% is a solution to~1!–~6!.

The outline of the proof is given in Ref.@2# @see Ref.@3#
for mathematical details and a proof of existence of a uniq
solution to the variational inequality~7!#. It was also shown
that the surface flux magnitudem(x,t) is, in this model, a
Lagrange multiplier related to the pointwise constraint~3!.
The values of such multipliers are not uniquely determin
by the local conditions, which is the ‘‘mathematical expl
nation’’ of long-range interactions typical of extended dis
pative systems in a critical~marginally stable! state; see Ref.
@25#.

The model ~1!–~6! or, equivalently,~7!, has analytical
solutions~see Ref.@2#! describing the shapes of piles built u
on flat platforms in the experiments@6#. The simplest of
these solutions is the ideal cone growing below a po
sourcew5w0d(x) on the supporth0(x)[0,

FIG. 1. Multivalued constitutive relationm5m(u¹hu).
5-2
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TWO CONTINUOUS MODELS FOR THE DYNAMICS OF . . . PHYSICAL REVIEW E 63 041505
h~x,t !5k max$r ~ t !2uxu,0%,

where r (t)5(3w0t/pk)1/3 is the radius of the cone bas
Numerical solutions@1,4# also demonstrate simple geomet
cal structures that agree with one’s sandbox memories.
though the model is simplified in many respects, it allows
the multiplicity of possible pile shapes. The avalanches m
be introduced into the model as solution discontinuities~in
time! triggered by sudden changes of the admissible seK
~see Refs.@9,2#!, and are instantaneous events. On the ti
scale of a slow pile growth the life of an avalanche is,
deed, very short.

III. MODIFIED BCRE EQUATIONS

The BCRE equations@12,13# involve two coupled vari-
ables: the pile height,y5h(x,t), and the effective thicknes
~density! of the rolling grains layer,R(x,t) @R(x,t)dV is the
volume that the material, currently rolling above the ar
dV, would occupy in the pile#. The model has been formu
lated for a two-dimensional pile (xPR1); free surface slope
deviations from the critical angle were assumed to be sm
Original BCRE equations included diffusion terms to a
count for a nonlocality of grains dislodgement and for flu
tuations of rolling grain velocity. Although diffusion plays
crucial role in BCRE’s scenario of avalanches@12,13,20#,
these terms were regularly omitted by other researchers
either assumed that diffusion was insignificant in their pro
lems and simplified the model, or proposed a different a
lanche scenario~see, e.g., Refs.@14,16,18,26#!. Below, we
also omit the diffusion terms at first, but introduce sm
diffusion at a later stage as a means for model regulariza
in transition to a large-scale limit. Adding small diffusio
~artificial viscosity! is often employed also to smooth th
discontinuous solutions; see, e.g., Ref.@18#.

Simplified BCRE equations may be written as follows:

] th5G@h,R#, ] tR1]x~vR!5w2G@h,R#.

Here the termG@h,R# accounts for the conversion of rollin
grains into immobilized grains and vice versa,v is the hori-
zontal projection of rolling grains velocity, andw(x,t) is the
source intensity~it is assumed that the tipped grains do n
stick to the pile surface but join the rolling grains first!.

Limiting their consideration to the slopes that are close
critical, BCRE assumed a constant downslope drift veloc
v. The surface flux magnitudeq5vR is thus determined
solely by the rolling layer thicknessR. Since in the previous
model q5mk for the critical slopes,m and R play similar
roles, and the two choices of basic variables,$h,m% and
$h,R%, are essentially equivalent. The exchange termG in
the BCRE model is linearized in a vicinity of the critica
angle a r and is proportional~for thin surface flows! to R,
G@h,R#5gR(a r2u), where u(x,t) is the surface slope
angle andg is a coefficient.

For a three-dimensional pile (xPR2), the model equa-
tions are similar,

] th5G@h,R#, ] tR1¹•~vR!5w2G@h,R#, ~8!
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but the constitutive relations determiningv and, probably,
G@h,R# should be modified; here we will follow Ref.@27#
~also see Ref.@28#!. We assume that the rolling particles dri
toward the steepest descent of the free surface with a m
velocity v depending on the slope angle~the steeper the
slope, the higher is the velocity!. On their way downslope
these particles may be trapped and absorbed into the mo
less bulk~the steeper the slope, the lower is the trapping r
G). If the surface is horizontal, the mean flow velocity
zero and the trapping rate is maximal; foru5a r the rolling
particles follow without trapping. Below, we will not con
sider the overcritical slopes, and also assume that the t
ping rate is proportional to the amount of rolling grainsR.

At least partially, this simplified picture can be justifie
by recent experimental, theoretical, and numerical studies
the motion of a spherical particle on a rough inclined pla
@29,30#. For the relevant region of slope anglesu, the energy
dissipation due to the multiple shocks experienced by a m
ing particle is equivalent to the action of a viscous frictio
force @29#. Because of this such particles reach a const
mean velocity proportional to sinu. Sometimes, however, th
particles are suddenly trapped in a well, and completely l
their momentum in the direction of motion@30#. Of course,
conditions in the collective flow of grains over the pile su
face are somewhat different. In particular, the flow veloc
may depend on the thickness of rolling grains layer@31#, and
the exchange rate is not exactly proportional toR @17#. Vari-
ous improved dependencies can be incorporated into
model. The limiting behavior of the modified BCRE mod
is, however, robust, and does not depend on details. For
ity of presentation we will consider the long-scale limit of
thin-flow model, with the simplest phenomenological re
tions determining the flow velocity and the rolling-to
immobilized-state transition.

Since the mean velocity of the surface flow is propo
tional to sinu @29#, its horizontal projectionv is proportional
to sinu cosu5tanu/(11tan2u). Postulating that the flow is
in the steepest descent direction, we obtainv52m¹h/(1
1u¹hu2), wherem is a coefficient. Simplifying this relation
we assume

v52m¹h. ~9!

The exchange rateG should not depend on the slope orie
tation, and we assume it to be a smooth decreasing func
of u¹hu2 that becomes zero for critical slopes. AssumingG is
proportional toR ~thin flows!, we arrive at

G@h,R#5gRS 12
u¹hu2

k2 D ~10!

as the simplest constitutive relation@27#. We will now derive
a dimensionless formulation for the modified BCRE mod
@Eqs.~8!–~10!#.

The parameters in this model have the following dime
sions: @g#5T 21 and @m#5T 21. Let us denote byw̄ the
characteristic intensity of the external source;@w̄#5LT21.
The three length scales characterizing the pile surface
namics and surface granular flow may be defined as follo
5-3
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LEONID PRIGOZHIN AND BORIS ZALTZMAN PHYSICAL REVIEW E63 041505
~i! the typical thickness of the rolling grains layer,LR

5w̄/g; ~ii ! the mean path of a rolling particle before it
trapped strongly depends on the slope steepness but,
fixed subcritical slope, is proportional to the ratioLP5m/g
characterizing the competition between rolling and trappi
and ~iii ! the pile sizeL.

The timeT5L/w̄ needed for a source with given intensi
w̄ to produce a pile of sizeL may be used as a long tim
scale. Rescaling the variables,

x85
1

L
x, h85

1

L
h, R85

1

LR
R, w85

1

w̄
w, t85

1

T
t,

we arrive at the following dimensionless formulation:

] th5G@h,R#, ~11!

LR

L
] tR2

LP

L
¹•~R¹h!5w2G@h,R#, ~12!

G@h,R#5RS 12
u¹hu2

k2 D . ~13!

Typically, LR!LP,L. The first coefficient in Eq.~12! is
very small, so it may often be possible to omit the cor
sponding term and use a quasistationary equation for
rolling layer. Such an approach was already employed
simulation of the dynamics of sand ripples; see Ref.@27#.
The second coefficientLP /L may be significant for smal
piles, like sand ripples, but becomes small too for large pi
Further simplification of the model is then appropriate.

IV. LONG-SCALE LIMIT OF BCRE MODEL

Let us denoten5LP /L, and study then→0 behavior of
the model@Eqs. ~11!–~13!#. This limit corresponds to the
case of large piles (L@LP). We want to show that in this
limit the pile shape evolution is described by the variatio
inequality ~7! which remains invariant under the re
scaling employed.

Physically, the situation is clear: although the model@Eqs.
~11!–~13!# permits grains to roll down upon any incline
slope, the rolling particles are quickly stopped and th
paths are short compared to the pile size for all except
almost critical slopes. This is essentially what is assume
the model @1,2#, which permits rolling upon the critica
slopes only. Mathematically, the situation is somewhat m
complicated.

SinceLR!LP , we assumeLR /L is o(n) and setLR /L
5nl(n), wherel tends to zero asn→0. Let us introduce a
new variable,m5nR, definec(u)512u2/k2, and rewrite
the model@Eqs.~11!–~13!# as

] th5
mc~ u¹hu!

n
, l] tm2¹•~m¹h!5w2

mc~ u¹hu!
n

.

For anyn.0 this system consists of two coupled hyperbo
equations. The second equation, which can be regarded
04150
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equation form, contains in its main part the coefficient¹h
which may be discontinuous. The theory for such equati
is complicated and not well developed. To circumvent t
difficulty, we add small diffusion to both equations and co
sider the regularized models

] th5
mc~ u¹hu!

n
1«hDh, ~14!

l] tm2¹•~m¹h!5w2
mc~ u¹hu!

n
1«mDm, ~15!

where the positive coefficients«h(n) and«m(n) vanish asn
tends to zero. It should be noted that, although small dif
sion may be physically meaningful and has been includ
into the original BCRE formulation@12,13#, here we intro-
duce it merely as a parabolic regularization of hyperbo
equations convenient for analyzing the model’s behavio
n→0.

We assume the same initial and boundary conditio
@Eqs. ~5! and ~6! correspondingly# for the functionh. The
non-negative values ofm both in V at t50 and on the
boundary of this domain fort.0 may be arbitrary: these
initial and boundary conditions result only in the appearan
of boundary layers in the solution for any finiten.0 and are
lost in then→0 limit. Rigorously, convergence of the prob
lem ~14!, ~15! to variational inequality~7! is considered else
where@32#. Here we present a simplified scheme of the pro
and avoid technicalities.

The main step is, as usual, to obtain uniform inn.0 a
priori estimates on the solutions of Eqs.~14! and~15!. First,
taking the gradient and multiplying by¹h, from Eq.~14! we
derive a parabolic partial differential equation foru¹hu2.
Sincec(k)50 andu¹h0u<k, we are able, using the max
mum principle for this equation, to show that forn.0

u¹hu<k for all ~x,t !; h is uniformly bounded.
~16!

Second, using the non-negativeness of the source func
w(x,t), and applying the maximum principle to Eq.~15!, we
deduce that for eachn.0,

m>0 for all ~x,t !. ~17!

Applying estimates~16! and ~17! to Eq. ~14! we obtain

mc~ u¹hu!5O~n!. ~18!

Sendingn to zero in ~16!, ~17!, and ~18!, we establish the
fulfillment in this limit of conditions ~1!, ~3!, and ~4!. Fi-
nally, adding Eqs.~14! and ~15!, we obtain

l] tm1] th2¹•~m¹h!5w1«hDh1«mDm.

Sincel, «h , and«m vanish asn→0, we can show that the
corresponding limits ofh and m satisfy also the balance
equation~2! in some weak~integral! sense. This complete
the proof, because the model~1!–~6! is equivalent to the
variational inequality~7!.
5-4
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To illustrate this result we will now compare solutions
the BCRE-type model@Eqs. ~14! and ~15!#, solutions of
variational inequality~7!, and real shapes of small and larg
piles. Let us consider first a pile growing under a po
source on an infinite horizontal supporth050. Although in
this case the piles are known to be almost perfect co
sometimes one can note@33# curved tails near the bottom o
a small pile@Fig. 2~a!#. As the pile becomes larger, the ta
remains of only, say, tens of grain diameters long, so the
of a large pile is difficult to see@Fig. 2~b!#.

The modified BCRE model@Eqs.~14! and~15!# describes
this situation quite satisfactorily~Fig. 3!. ~Here we omitted
small diffusion terms added for regularization, and solv
the equations numerically for«h5«m50,l50.1n, and two
different values of the parametern.! Although the tails of
small piles (n50.2) are clearly seen, tails of the larger pil
(n50.01) is difficult to detect. We see also that piles, p
dicted by the BCRE model with smalln and l, are very
close to the growing ideal cone, the analytical solution of
variational inequality~7!. It may be noted that for small val
ues ofn and l the model equations are stiff, and their n
merical solution becomes difficult. Thus, even using the
plicit finite-difference approximation of Eqs.~14! and ~15!,
we needed 105 time steps in the latter example.

Analytical quasistationary solution to the modified BCR
equations~14! and~15! without diffusion can be found in the
one-dimensional vessel-filling problem considered pre

FIG. 2. Piles growing below a pointlike source.~a! Digitized
image of a small polenta pile; see Alonso and Herrmann@33#. Dif-
ferent gray levels show the pile at different stages of growth;
curved tails near the pile bottom remain short.~b! Large conical
pile; photo by Slater@34#.
04150
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ously in Ref.@16# for the BCRE model with constant drif
velocity of particles. Let the domainV5(0,L) be bounded
by two vertical walls, andw5w0d(x2L/2). Assuming] th
[c and] tm[0, we obtain

c5
m

n S 12
uhx8u

2

k2 D , ~19!

FIG. 4. Geomorphological patterns on two different scal
Photo by © Carr Clifton, reproduced with his kind permission.

e

FIG. 3. Piles growing below a pointlike source. Numerical s
lution of Eqs.~14! and ~15! with «h5«m50, mu t5050, l50.1n,
and k51. ~a! Small piles,n50.2. ~b! Solid line: large piles,n
50.01; dashed line: analytical solution of variational inequality~7!.
5-5
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and 2(mhx8)x85w2(m/n)(12uhx8u
2/k2). Adding these

equations and integrating inx, we see thatc5w0 /L and then
m5x/Lhx8 for 0,x,L/2 ~we can use symmetry!. Substitut-
ing these expressions into Eq.~19! we find

hx85
k

~nk/2x!1A~n2k2/4x2!11
, 0,x,L/2.

Although hx8→0 asx→0 for anyn.0 ~a tail!, we also see
that asn→0 the slope becomes critical,hx8→k for all 0,x
,L/2, and we arrive at the corresponding solution@2# of the
variational inequality~7!.

Note that in both examples considered above the mo
with constant velocity of rolling particles yields solution
with logarithmic singularities that are unphysical and mu
be ‘‘cut off’’ ~see, e.g., Ref.@16#!. No singularities appear in
the modified BCRE model@Eqs. ~14! and ~15!# where the
velocity depends on the slope steepness.

V. CONCLUSION

We considered two different continuous models for p
surface dynamics: the BCRE model@12,13# and the varia-
tional model@1,2#. Both models are written for two couple
dependent variables and are able, in principle, to accoun
multiplicity of metastable pile shapes and surface a
lanches. It was found that the models are related and desc
the pile surface dynamics on different spatiotemporal sca
04150
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BCRE-type models may be used to simulate the fast
cesses, such as the initiation, spreading, and settling dow
an avalanche. To describe the much slower dynamics o
mean shape of a pile, the model may often be simplified
employing a quasistationary equation for the rolling gra
layer. Such a model is able to predict some peculiaritie
small pile shapes@33#, and was recently employed for sim
lating the nonlinear dynamics of sand ripples@27#.

Unlike the BCRE models, the variational model of p
growth does not permit the discharged grains to roll u
subcritical slopes, and is therefore unable to account for
features of the sand surface as the sand-ripple instabili
the surface slope deviation from the critical angle near
bottom of a conical pile. Indeed, these effects are determ
by rolling of particles upon the subcritical slopes, and
exhibited on the length scale comparable to the mean pa
a particle prior to its being trapped.

On the other hand, sand ripples on the dune surfac
tiny tails at the bottom of a pile are seen only from a sh
distance~Fig. 4!. These small details are difficult to disti
guish when watching from a longer distance, allowing on
follow the evolution of a large dune or the formation o
large pile. In such situations the BCRE model contains
other small parameter. This complicates simulations
makes them inefficient. As shown in our work, in the lon
scale limit BCRE-type models converge to the variatio
model of pile growth. The latter model is more appropri
for simulating the pile surface dynamics on a large s
tiotemporal scale.
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rique des Ine´quations Variationnelles~Dunod, Paris, 1976!.
@25# L. Prigozhin, Free Boundary Problem News No. 10, 2~1996!.
@26# S.N. Dorogovtsev and J.F.F. Mendes, Phys. Rev. Lett.83,

2946 ~1999!.
@27# L. Prigozhin, Phys. Rev. E60, 729 ~1999!.
@28# K.P. Hadeler and C. Kuttler, Granular Matter2, 9 ~1999!.
@29# F.-X. Riguidel, R. Jullien, G.H. Ristow, A. Hansen, and D.

Bideau, J. Phys. I4, 261~1994!; S. Dippel, G.G. Batrouni, and
D.E. Wolf, Phys. Rev. E56, 3645~1997!; C. Henrique, M.A.
Aguirre, A. Calvo, I. Ippolito, S. Dippel, G.G. Batzouni, and
D. Bideau,ibid. 57, 4743~1998!.

@30# M.A. Aguirre, I. Ippolito, A. Calvo, C. Henrique, and D.
Bideau, Powder Technol.92, 75 ~1997!.

@31# O. Pouliquen, Phys. Fluids11, 542 ~1999!.
@32# L. Prigozhin and B. Zaltzman~unpublished!.
@33# J.J. Alonso and H.J. Herrmann, Phys. Rev. Lett.76, 4911

~1996!.
@34# R.A. Slater, inBulk Materials Handling, edited by M.C. Hawk

~University of Pittsburgh, Pittsburgh, 1971!, Vol. 1.
5-6


